Dictyostelium myosin-IE is a fast molecular motor involved in phagocytosis.

نویسندگان

  • Ulrike Dürrwang
  • Setsuko Fujita-Becker
  • Muriel Erent
  • F Jon Kull
  • Georgios Tsiavaliaris
  • Michael A Geeves
  • Dietmar J Manstein
چکیده

Class I myosins are single-headed motor proteins, implicated in various motile processes including organelle translocation, ion-channel gating, and cytoskeleton reorganization. Here we describe the cellular localization of myosin-IE and its role in the phagocytic uptake of solid particles and cells. A complete analysis of the kinetic and motor properties of Dictyostelium discoideum myosin-IE was achieved by the use of motor domain constructs with artificial lever arms. Class I myosins belonging to subclass IC like myosin-IE are thought to be tuned for tension maintenance or stress sensing. In contrast to this prediction, our results show myosin-IE to be a fast motor. Myosin-IE motor activity is regulated by myosin heavy chain phosphorylation, which increases the coupling efficiency between the actin and nucleotide binding sites tenfold and the motile activity more than fivefold. Changes in the level of free Mg(2+) ions, which are within the physiological range, are shown to modulate the motor activity of myosin-IE by inhibiting the release of adenosine diphosphate.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular motors and membrane traffic in Dictyostelium.

Phagocytosis and membrane traffic in general are largely dependent on the cytoskeleton and their associated molecular motors. The myosin family of motors, especially the unconventional myosins, interact with the actin cortex to facilitate the internalization of external materials during the early steps of phagocytosis. Members of the kinesin and dynein motor families, which mediate transport al...

متن کامل

A class VII unconventional myosin is required for phagocytosis

BACKGROUND Phagocytosis, the process by which cells internalize particles, is essential for the defense of multicellular organisms against invading pathogens and is the major means by which many unicellular organisms obtain nutrients. The actin cytoskeleton plays a critical role in phagocytosis and the observation that a significant amount of force (10-20 nN) is generated during internalization...

متن کامل

Myosin I

Phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)) is a key signaling molecule in chemotaxis, a directed cell migration toward chemoattractants. PtdIns(3,4,5)P(3) is transiently generated by chemotactic stimulation and activates reorganization of the actin cytoskeleton at the leading edge of migrating cells. In a recent study, we demonstrated that PtdIns(3,4,5)P(3) directly binds to t...

متن کامل

Dictyostelium myosin IK is involved in the maintenance of cortical tension and affects motility and phagocytosis.

Dictyostelium discoideum myosin Ik (MyoK) is a novel type of myosin distinguished by a remarkable architecture. MyoK is related to class I myosins but lacks a cargo-binding tail domain and carries an insertion in a surface loop suggested to modulate motor velocity. This insertion shows similarity to a secondary actin-binding site present in the tail of some class I myosins, and indeed a GST-loo...

متن کامل

Molecular genetic analysis of myoC, a Dictyostelium myosin I.

The protozoan myosin Is are widely expressed actin-based motors, yet their in vivo roles remain poorly understood. Molecular genetic studies have been carried out to determine their in vivo function in the simple eukaryote Dictyostelium, an organism that contains a family of four myosin Is. Here we report the characterization of myoC, a gene that encodes a fifth member of this family. Analysis ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of cell science

دوره 119 Pt 3  شماره 

صفحات  -

تاریخ انتشار 2006